
	
   1	
  

Evaluation of NU-WRF rainfall forecasts for IFloodS 1	
  

Di Wu1,2, Christa Peters-Lidard3, Wei-Kuo Tao1, and Walter Petersen4 2	
  

1 Mesoscale Atmospheric Processes Laboratory  3	
  
NASA Goddard Space Flight Center 4	
  

Greenbelt, Maryland 5	
  
 6	
  

2 Science Systems and Applications, Inc. 7	
  
Lanham, Maryland 8	
  

 9	
  
3 Hydrological Sciences Laboratory 10	
  
NASA Goddard Space Flight Center 11	
  

Greenbelt, Maryland 12	
  
 13	
  

4 Code 610.W 14	
  
 NASA GSFC/Wallops Flight Center 15	
  

 Wallops Island, Virginia 16	
  
 17	
  

 18	
  

 19	
  

 20	
  

 21	
  

 22	
  

 23	
  

 24	
  

 25	
  

 26	
  

 27	
  

 28	
  

-----  29	
  
1 Corresponding author address:  Di Wu, Code 612, NASA Goddard Space Flight 30	
  
Center, Greenbelt, MD  20771, Email:  di.wu@nasa.gov 31	
  
 32	
  

https://ntrs.nasa.gov/search.jsp?R=20170002549 2020-03-11T02:37:25+00:00Z



	
   2	
  

Abstract 33	
  
 34	
  

The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre-35	
  

GPM-launch campaign from 1 May to 15 June 2013.  During the campaign period, real 36	
  

time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting 37	
  

(NU-WRF) model to support the everyday weather briefing.  In this study, two sets of the 38	
  

NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor 39	
  

(MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand 40	
  

the impact of Land Surface initialization on the predicted precipitation.  NU-WRF is also 41	
  

compared with North American Mesoscale Forecast System (NAM) 12 km forecast.   In 42	
  

general, NU-WRF did a good job at capturing individual precipitation events.  NU-WRF 43	
  

is also able to replicate a better rainfall spatial distribution compare with NAM.  Further 44	
  

sensitivity tests show that the high-resolution makes a positive impact on rainfall 45	
  

forecast.  The two sets of NU-WRF simulations produce very close rainfall 46	
  

characteristics.  The Land surface initialization do not show significant impact on short-47	
  

term rainfall forecast, and it is largely due to the soil conditions during the field campaign 48	
  

period. 49	
  

  50	
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 51	
  

1. Introduction 52	
  

One of the goals of the Global Precipitation Measurement (GPM) mission 53	
  

ground validation program is to conduct integrated hydrological validation, in which 54	
  

the terrestrial water budget is utilized to evaluate the accuracy of blended satellite 55	
  

and/or model-based precipitation products.  The Iowa Flood Studies (IFloodS) 56	
  

campaign was conducted in eastern Iowa as a pre-GPM-launch campaign from 1 May 57	
  

to 15 June, 2013, with the goal of examining how well GPM and other blended 58	
  

products could be used for flood forecasting.   59	
  

The areas of focus for the IFloodS campaign were the Cedar and Iowa River 60	
  

Basins, which were covered by a ground-based NASA NPOL radar deployed along 61	
  

with rain gauges and disdrometers in addition to the existing NEXRAD radar network 62	
  

(Cunha et al., 2015).   In addition to the traditional rainfall-oriented instrumentation, 63	
  

in the South Fork Iowa River, a network of rain gauge and soil moisture platforms 64	
  

was deployed in coordination with the Agricultural Research Service and NASA’s 65	
  

Soil Moisture Active Passive (SMAP) mission (Coopersmith et al, 2015).  These soil 66	
  

moisture platforms, in addition to extensive existing streamflow monitoring by the 67	
  

USGS and Iowa Flood Center, help support the integrated hydrologic validation goals 68	
  

of the campaign.  Further, additional, high-resolution integrated hydrologic validation 69	
  

is supported in the Turkey River Basin, within which 20 rain gauges with soil 70	
  

moisture probes and two Iowa Flood Center XPOL weather radars were deployed. 71	
  

 To support deployment of ground-based instrumentation, our team at GSFC 72	
  

conducted real-time forecasting with a meteorological model, which was delivered 73	
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daily to support 0900LT forecast briefings delivered to the campaign personnel.  This 74	
  

effort required not only dedicated computational resources, but also a robust 75	
  

modeling system capable of simulating severe convective episodes typical of eastern 76	
  

Iowa during the active spring period.  In this work we will provide a comprehensive 77	
  

evaluation of the modeling system, including the precipitation forecasts from two 78	
  

different configurations designed to evaluate the impact of land surface initialization 79	
  

on the two forecasts.  We first describe the experimental design, including the 80	
  

modeling system, configuration and evaluation datasets.  Next, we present an 81	
  

evaluation of the precipitation forecasts based on an archive for the entire 82	
  

experimental period relative to ground data in addition to an operational forecast 83	
  

model. Finally, we discuss the implications of this work for future forecasting 84	
  

applications. 85	
  

 86	
  
1. Experiment design 87	
  

a. NU-WRF model  88	
  

The NASA-Unified WRF (NU-WRF; http://nuwrf.gsfc.nasa.gov) modeling 89	
  

system has been developed at Goddard Space Flight Center (GSFC) as an observation-90	
  

driven integrated modeling system that represents aerosol, cloud, precipitation and land 91	
  

processes at satellite-resolved scales (Peters-Lidard et al. 2015).  NU-WRF is a superset 92	
  

of the National Center for Atmospheric Research (NCAR) Advanced Research WRF 93	
  

(ARW) dynamical core model, achieved by fully integrating the GSFC Land Information 94	
  

System (LIS; Kumar et al. 2006; Peters-Lidard et al. 2015), the WRF/Chem enabled 95	
  

version of the GOddard Chemistry Aerosols Radiation Transport (GOCART; Chin et al. 96	
  

2000) model, the Goddard Satellite Data Simulation Unit (G-SDSU; Matsui et al. 2009), 97	
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and custom boundary/initial condition preprocessors.  Several NASA physical packages 98	
  

(microphysics and radiation) have also been implemented into NU-WRF.  These physical 99	
  

processes include CRM-based microphysics (Tao et al. 2003; Lang et al. 2007, 2011, 100	
  

2014) and radiation (Chou and Suarez 1999) schemes.  All the above features are 101	
  

combined into a single software release, with source code available by agreement with 102	
  

NASA/GSFC. 103	
  

In this study, NU-WRF version 3.4.1 (based on NCAR WRF-ARW version 3.4.1) 104	
  

is employed to conduct high-resolution simulations.  There are 60 vertical levels and 3 105	
  

spatial domains with 9, 3 and 1 km grid spacing (Fig. 1), and time steps of 27, 9 and 3 106	
  

seconds respectively.  The Grell-Devenyi cumulus parameterization scheme (Grell and 107	
  

Devenyi 2002) is adopted for the outer domain; no convective parameterization was used 108	
  

for two inner domains.  The PBL parameterization employed the Mellor-Yamada-Janjic 109	
  

(Mellor and Yamada 1982) Level-2 turbulence closure model through the full range of 110	
  

atmospheric turbulent regimes.  The Goddard broadband two-stream (upward and 111	
  

downward fluxes) approach was used for the short- and long-wave radiative flux 112	
  

calculations (Chou and Suarez 1999) and its explicit interactions with clouds 113	
  

(microphysics).  In addition, the numerical simulations use Goddard 3ICE scheme (Lang 114	
  

et al. 2011), which prognoses three types of ice hydrometeor species (i.e. cloud ice, snow, 115	
  

and graupel).  116	
  

 117	
  

b. NASA Land Information System 118	
  

The Land Information System (LIS) is a core component of NU-WRF.  It is a 119	
  

flexible land surface modeling and data assimilation framework developed with the goal 120	
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of integrating satellite- and ground-based observational data products and advanced land 121	
  

surface modeling techniques to produce optimal fields of land surface states and physics 122	
  

(Kumar et al. 2006; Peters-Lidard et al. 2007).   The infrastructure can not only be 123	
  

directly coupled with the atmosphere, it can also integrate high resolution observations 124	
  

with the model forecasts to generate improved estimates of land surface conditions such 125	
  

as soil moisture, evaporation, snow pack, and runoff, at 1km and finer spatial resolutions 126	
  

and at one-hour and finer temporal resolutions.  127	
  

The role of LIS in the simulation was two-fold: First, to provide physically 128	
  

consistent land surface initialization for NU-WRF; Second, to interact with the surface 129	
  

layer and atmospheric components of NU-WRF and produce coupled water, energy and 130	
  

momentum fluxes.  The LSM employed in LIS for this study is Noah LSM version 3.2.1 131	
  

(Ek et al. 2003).  WRF-ARW version 3.4.1 uses Noah LSM version 3.4.1.  For 132	
  

consistency, the Noah land surface model is run offline within LIS using the same 133	
  

domain configuration as NU-WRF.   The Noah LSM in the offline LIS also uses the same 134	
  

soil and vegetation database as NU-WRF.   135	
  

The offline LIS run is cold started from 2 May 2008 to 1 May 2013.   The long 136	
  

spin up period is used for land surface states to achieve equilibrium for initialization of 137	
  

WRF-LIS.  The LIS offline spin up uses Stage IV rainfall data to provide hourly rainfall, 138	
  

and utilizes GDAS to provide atmospheric forcing input.   The Stage IV rainfall product 139	
  

is only used to provide forcing for the LSM during the analysis cycle and is not 140	
  

assimilated into the atmospheric component of the coupled simulation.   141	
  

 142	
  

c. NU-WRF real-time forecasts  143	
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During the IFloodS campaign period, two sets of 48-hour NU-WRF forecasts 144	
  

were produced twice a day from May 1st to June 15th 2013. These forecasts required 7 145	
  

hours to produce with 2048 CPUs on NASA NCCS supercomputer. 146	
  

 The configuration for both the control (WRF) and coupled (COUP) simulation 147	
  

are as described above (in section 3a).  The most substantial difference between the two 148	
  

sets of forecasts are the initialization of the soil states in the land surface model.   As 149	
  

previously mentioned, the control simulation uses the same version of Noah Land 150	
  

Surface model as in WRF V3.4.1, while the coupled simulation (COUP) uses a slightly 151	
  

older version (3.2.1) of the Noah Land-Surface model, since that is the most recent 152	
  

version of Noah that was implemented in LIS at the time of the campaign.   The changes 153	
  

from 3.2 to 3.4 focused on snow, and based on other offline analyses (not shown) did not 154	
  

result in significant differences in soil moisture, runoff, or land surface fluxes.  Hence, 155	
  

the key difference between the WRF and COUP runs is the soil initialization.  The soil 156	
  

initialization for the control simulations comes from spatially interpolating the soil 157	
  

moisture and soil temperature states in the forcing dataset, which is NAM in our case, 158	
  

while the land-surface initialization for COUP is produced from a three-year (May 1st 159	
  

2010 to May 1st 2013) offline spin up by LIS, updated daily by an analysis forced by a 160	
  

previous WRF forecast where the precipitation is bias-corrected using the Stage IV 161	
  

blended radar-rain gauge product.    162	
  

As shown in Fig. 2, the forecast starts everyday at 00 UTC and 12 UTC for 48 163	
  

hours integration.   For coupled simulation, every forecast cycle starts with a short LIS 164	
  

offline analysis, and then proceeds to an online coupling between WRF and LIS.  The 165	
  

offline analysis is initialized from the previous day NU-WRF forecast and forward 166	
  



	
   8	
  

integrated for 24 hours to current initialization time.  Stage IV data was used to provide 167	
  

hourly precipitation forcing for the LIS analysis, while NU-WRF output from previous 168	
  

day supplements the atmospheric forcing.   Similar to the three-year offline spin up, the 169	
  

analysis provides the soil initialization for the coupled simulation, while the atmospheric 170	
  

initialization is provided from NAM, as in the control (WRF) simulation.   171	
  

d. Data and methodology 172	
  

Two observational datasets are employed for model evaluation. The Stage IV (Lin 173	
  

and Mitchell 2005) rainfall estimates are available at 4 km grid spacing every hour.  It is 174	
  

a widely used rainfall product by both hydrological and meteorological communities, due 175	
  

to its national coverage, high spatial and temporal resolutions and overall low biases (e.g. 176	
  

Tang et al. 2014, Wu et al. 2011, and Seo et al. 2013).  Its good performance in Mean 177	
  

Squared Error (MSE) and total bias contributes from the effectiveness of bias correction, 178	
  

and the manual Quality Control (QC) procedures (Cunha et al. 2015). 179	
  

Multi-Radar/Multi-Sensor System (MRMS) Quantitative Precipitation Estimate 180	
  

(QPE) integrates radar QPE, gauge QPE, local gauge bias corrected radar QPE, and 181	
  

gauge orographic precipitation climatology QPE.   MRMS QPE has a 2 min time interval 182	
  

in each 0.01° x 0.01° grid box.  One improvement to the previous QPE product ‘Q2’ is 183	
  

that MRMS uses most advanced dual-polarimetric (DP) radar technologies to eliminate 184	
  

non-meteorological echoes, and it also provides a more accurate spatial distribution of 185	
  

precipitation. 186	
  

Despite the advantages in DP QPE in certain aspects, it does not necessarily 187	
  

provide an overall superior QPE than single-polarimetric (SP) QPE, such as Stage IV.  188	
  

According to Cunha et al. (2015), DP QPE shows a higher MSE than Stage IV estimates.  189	
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However, Stage IV also shows a decreased correlation with rain gauges with increasing 190	
  

rainfall threshold (greater than 5 mm/h) than DP estimates.  In this study, we choose 191	
  

MRMS as a QPE reference for most statistics analysis.  Stage IV is also shown to give a 192	
  

uncertainty range between two datasets.   193	
  

The model analysis is performed on the inner most grid of NU-WRF forecasts, 194	
  

which output each hour with 1 km grid spacing.  NAM forecasts are available at three 195	
  

hourly intervals with 12 km spatial resolution.  Both 00 Z and 12 Z forecasts are 196	
  

evaluated for 48 hours model integration on each day for all modeling datasets during 197	
  

May 1st to June 15 2015.  All datasets are remapped onto the NAM grid and are 198	
  

intercompared at three hourly time intervals. 199	
  

 200	
  

3.  Evaluation of rainfall forecast 201	
  

 Figure 3 shows the accumulated precipitation from a composite of NU-WRF 202	
  

simulations and Stage IV dataset from May 1st to June 15th 2013.  Stage IV shows clearly 203	
  

a relatively higher accumulated rainfall area from Iowa to northern Illinois compare to 204	
  

surrounding regions.  NU-WRF simulated rainfall accumulation shows a similar spatial 205	
  

pattern as the Stage IV.  The high accumulation is over Iowa and Northern Illinois, with a 206	
  

peak that has a higher magnitude than Stage IV accumulated rainfall. 207	
  

 208	
  

a.  Rainfall time-series  209	
  

 Figure 4 shows three hours accumulated rainfall from two NU-WRF simulations 210	
  

(WRF and COUP), NAM, Stage IV, and MRMS from May 1st to June 15th.  The values 211	
  

for models are the mean from available forecast cycles.  The first 6 hours simulations are 212	
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considered as model spin up period, thus are removed from the analysis.  Despite the 213	
  

overall overestimation comparing with observations, NU-WRF runs capture the 214	
  

individual precipitation events well.  There are only slight differences between the two 215	
  

sets of NU-WRF runs.  NAM is very close to observation for averaged rainfall over the 216	
  

whole period.  However, it does not replicate the individual events well, especially during 217	
  

May 16th to June 1st, where NAM tends to miss the peak or significantly underestimates 218	
  

the rainfall.  During the rest of the periods, NAM has the tendency for overestimation.  219	
  

So despite NAM has a better averaged rainfall over the six-week period than NU-WRF, 220	
  

the NAM does not show a good forecast skill for individual events. 221	
  

 Also shown in Fig. 4, the precipitation events come in groups.  There are seven 222	
  

wet periods can be identified (Table 1), grouped by at least one dry day (or very light 223	
  

rain) in between two periods.  Each precipitation period can be caused by single 224	
  

convective/precipitating system or may be a succession of convective systems.  Most of 225	
  

these events have strong upper level support, which is typical for spring and early 226	
  

summer events.  Three of these periods have either short wave troughs (VII) or a 227	
  

combination of short wave and long wave troughs (III and IV), which brings weak but 228	
  

complicated forcings to the region.  Especially for period IV, where one short wave 229	
  

comes after another, and it associates with a series of propagating systems at surface.  230	
  

NAM struggles to produce an accurate precipitation forecast during period IV 231	
  

(Fig. 4).  On the other hand, NU-WRF is able to reproduce the individual peaks during 232	
  

period IV.  Despite using NAM as initial and boundary condition, the finer resolution 233	
  

NU-WRF simulations certainly show improved features in reproducing these 234	
  

precipitation events.  These series of weakly forced events demonstrate the characteristics 235	
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of warm season MCSs.  And according to many studies (e.g. Doswell et al. 1996; Fritsch 236	
  

and Carbone 2004), it is very difficult to improve forecasts for deterministic warm season 237	
  

rainfall events.  Even with the advancements in numerical models in recent years in both 238	
  

physics and resolutions, the forecast for warm season convections still remain a 239	
  

challenge.  And since it brings most heavy rainfall and events with high societal impacts, 240	
  

it is also quite important to improve warm season deterministic rainfall forecast. 241	
  

 242	
  

b. Rainfall statistics  243	
  

 The domain averaged three hours accumulated rainfall statistical scores are 244	
  

calculated from May 1st to June 15th with respect to the forecast lead-time (Fig. 5).  The 245	
  

bias scores (Fig. 5a) are negative for WRF, COUP, and NAM in the first six hours, which 246	
  

is due to the cold start of these models, where all the precipitation values are initialized 247	
  

from zero.  The two NU-WRF simulations have appreciably higher biases scores than 248	
  

NAM comparing with MRMS, which is also evident from Fig. 4 that NAM 249	
  

underestimates rainfall during period III and IV while overestimates for other periods.  250	
  

Despite the lower bias, NAM has higher RMSE (0.73) than two NU-WRF simulations 251	
  

(0.67 and 0.69).  Also NAM has lower correlation (0.60) comparing with two NUM-252	
  

WRF simulations (0.76 and 0.73).  Both NU-WRF domain averaged rainfall has 253	
  

relatively high correlations with MRMS, which echoes that NU-WRF has captured 254	
  

individual precipitation events in Fig. 4.  The correlation trend between models and 255	
  

MRMS are only decreasing slightly with increase of forecast lead-time.  The correlation 256	
  

between Stage IV and MRMS are very high (0.98).  The differences between two NU-257	
  

WRF simulations are small enough comparing with the differences between Stage IV and 258	
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MRMS.  However, the differences between two NU-WRF correlations increase with 259	
  

forecast lead-time.   260	
  

 When considering spatial variability between different datasets and MRMS, the 261	
  

correlation scores are much lower than the area averaged quantities (Fig. 6).  The 262	
  

correlation between Stage IV and MRMS decreases from 0.98 for area-averaged rainfall 263	
  

to 0.82 for considering both time and spatial correlations.  The score drops significantly 264	
  

for correlations between models and MRMRS, from previously 0.7 to under 0.2.  From 265	
  

Fig. 6, the decreasing trend of correlation is obvious for models, which demonstrate the 266	
  

forecast skill has decreased with increase of forecast hours.  Despite the low spatial 267	
  

correlation, NU-WRF seems to produce consistently slightly higher correlation than 268	
  

NAM forecasts.   269	
  

 Table 2 shows the spatial correlation scores for all seven different forecast 270	
  

periods.   NAM shows consistently lower scores than both NU-WRF forecasts.  And the 271	
  

correlation scores vary with different periods.  NAM has the lowest correlation during 272	
  

period IV and VII, while NU-WRF has a relatively lower correlation during V and VII.  273	
  

Period IV is one difficult period for NAM, on the other hand, NU-WRF did a fine job at 274	
  

capturing individual events (not shown) during this period.  It is one of the periods that 275	
  

NAM and NU-WRF has the largest differences in correlation score (0.07 vs 0.18).  276	
  

One caveat of spatial correlations analysis is that the displacement in spatial 277	
  

correlations is heavily penalized, same as the appearance of spurious precipitating 278	
  

regions.  Thus for individual time slice, the correlation may not necessarily reflect all 279	
  

aspects of the forecast performance.  Such as in Fig. 7, even the NU-WRF has captured 280	
  

the characteristics of heavy precipitation, it still has a lower correlation score.  However, 281	
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with a relatively bigger sample size, the correlation is capable of describing a general 282	
  

trend.  Such as, NAM consistently have a lower spatial correlation score than NU-WRF 283	
  

(Fig. 6), which is consistent with that NAM has a lower domain averaged correlation as 284	
  

well (Fig. 5c).  On the other hand, identification for spatial displacement is also 285	
  

important.  It is the dominant source of quantitative precipitation forecast (QPF) error 286	
  

(Ebert and McBride 2000).  Poor QPF skill has hindered hydrologic applications, 287	
  

particularly streamflow forecasting operations (Cuo et al. 2011).   288	
  

The two NU-WRF runs have very close correlations with each other, and the 289	
  

differences grow with time, which is also observed from rainfall spatial distributions for 290	
  

various cases (not shown).  It is a question whether the spread is caused by physical 291	
  

differences between the two models or by random error growth.  From Fig. 6a, the 292	
  

differences are fluctuating after 12 hours into the forecast for all cases, and similarly for 293	
  

different periods.  However, a systematic evaluation of this error behavior is beyond the 294	
  

scope of this study.   295	
  

 Figure 8 shows rainfall statistics for each forecast cycle using MRMS as a 296	
  

reference.  So the value at May 15th shows correlation of MRMS and 6 to 48 hours model 297	
  

forecast initialized at 00 UTC on May 15th.  The overall scores are similar to the scores 298	
  

from Fig. 5.  The differences are due to the sample selection and whether or not including 299	
  

the first six hours into the considerations.  In addition to aforementioned differences 300	
  

between models, it also clearly shows how models perform during different periods.  Fig. 301	
  

8a shows models underestimate some rainfall events during period III, IV, and VII, while 302	
  

overestimate the rest of the periods.  NAM shows large negative bias during period IV 303	
  

and positive bias during other periods, so the overall low bias of NAM is merely an 304	
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averaged effect from positive and negative biased cases.  For the RMSE score, all models 305	
  

show similar score (~0.55) compare with MRMS.  The spread of the RMSE scores 306	
  

among models (0.02) are even smaller than that between Stage IV and MRMS (0.14).  307	
  

High model RMSE are also associated with heave precipitation periods.  Period III and 308	
  

IV produce many heavy precipitation events, also associated with high model RMSEs.  309	
  

Figure 8c shows the correlations between different datasets and MRMS.  NAM 310	
  

performed poorly during period III and IV, which is also reflected in Fig. 4.  The low 311	
  

correlation period is around May 11th to 13th, where not much rainfall was brought to the 312	
  

area (Fig. 4).  Small phase shift in rainfall measurements can induce low correlation 313	
  

scores between Stage IV and MRMS.  Models also have poor correlations with MRMS 314	
  

during this period.   The differences of correlation scores of the two NU-WRF 315	
  

simulations (0.01) are smaller than that of Stage IV and MRMS (0.05). 316	
  

 317	
  

c. Rainfall time-series PDF  318	
  

 The precipitation PDF is also evaluated for model and observational datasets.  As 319	
  

shown on Fig. 9, NU-WRF compares very well with Stage IV data for rainfall 320	
  

accumulations less than 8 mm every three hours, but there are some overestimations for 321	
  

heavier rainfall frequencies.  On the other hand, NAM has produced outstandingly high 322	
  

frequencies for very light precipitation (0.25-0.5 mm), while significantly underestimated 323	
  

the frequencies for heavy rainfall (> 4 mm).  This feature is also evident from rainfall 324	
  

spatial distribution (Fig. 7), NAM produces large light rain area, but fails to produce any 325	
  

heavy rainfall.  It is also quite common in many coarse resolution models; large grid 326	
  

spacing limits its ability to resolve sub-grid convections.   327	
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 The two sets of NU-WRF runs have very close PDF distribution.  The differences 328	
  

of the two NU-WRF runs are even smaller than those between the two observational 329	
  

dataset (Stage IV and MRMS).  MRMS has higher light rainfall (0.25-1 mm) coverage 330	
  

and higher coverage for intense rainfall (>16 mm).  The small differences between two 331	
  

NU-WRF runs indicate that different land surface initialization and differences within the 332	
  

LSM do not have a big impact on precipitation intensity.  On the other hand, the PDF 333	
  

distribution is shown to be more sensitive to different cloud microphysics schemes (Tao 334	
  

et al., 2015).   335	
  

 336	
  

4  Discussion 337	
  

a.  Sensitivity Tests 338	
  

 NU-WRF and NAM share the same initial and boundary conditions, but their 339	
  

predicted rainfall characteristics are very different (shown in section 3), especially during 340	
  

period IV.  Additional sensitivity tests are performed for 9 km (WRF_9km) and 3km 341	
  

(WRF_3km) resolution, using 1 km NU-WRF without LIS coupling (WRF) as control 342	
  

run.  WRF_9km employs only the outer most domain in Fig. 1, while the WRF_3km uses 343	
  

two outer domains in Fig.1.  Besides with different resolutions and domain setups, 344	
  

WRF_9km uses Grell-Devenyi ensemble cumulus scheme (GD), where the WRF and 345	
  

WRF_3 km runs only applied GD for the outer most grid (with 9 km resolution).  NAM 346	
  

has significantly underestimated rainfall and the peak is out of phase with the 347	
  

observations for forecast initiated at 00 UCT on May 29th 2013 (Fig. 10).  WRF and 348	
  

COUP, on the other hand, captured the peak, despite 3 hours delayed than the 349	
  

observation.  By reducing the resolution from original 1 km (WRF) to 9 km (WRF_9km), 350	
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there is a reduction of peak value and shift of phase.  However, the change of resolution 351	
  

from 1 km to 3 km (WRF_3km) does not result in significant changes in the forecast.  In 352	
  

addition, 9 km run with Betts-Miller-Janjic (BMJ) cumulus scheme (WRF_BMJ) is used 353	
  

to compare with 9 km with the GD cumulus scheme (WRF_9km), same GD scheme was 354	
  

applied to the outer most domain in the control run (WRF).  BMJ cumulus scheme is also 355	
  

the one used in NAM forecast.   WRF_BMJ has an even lower peak magnitude than 356	
  

WRF_9km run, and its averaged rainfall is the most comparable to NAM in all the 357	
  

simulations.  There is improved forecast skill by adopting finer resolution and using GD 358	
  

cumulus scheme, even when initial and boundary conditions stay the same.  This is also 359	
  

consistent with many previous studies (Wang and Seaman 1997; Gallus 1999), the choice 360	
  

of convective schemes have a strong influence on simulated rainfall pattern. 361	
  

 362	
  

b. Soil moisture and rainfall 363	
  

 Of particular interest in this study is that whether there are improvements in 364	
  

rainfall forecast by applying high resolution and more accurate land-surface initial 365	
  

condition comparing to interpolated fields from regional model forecast.  As shown in 366	
  

previous sections, the differences in the rainfall forecasts between the two NU-WRF runs 367	
  

are rather small.  One possible reason for such small differences is that the region of 368	
  

interest is under the influence of many heavy precipitation events during the campaign 369	
  

period, thus with high water availability, the moisture transport from surface are similarly 370	
  

high in both models.  One indication for the above argument is high evaporative fraction 371	
  

(EF), which is the ratio of latent heat to available energy at the land surface.  EF is a 372	
  

diagnostic for the surface energy balance (energy-limited state or a moisture-limited 373	
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state), supposedly isolates soil moisture and vegetation from radiation and turbulent 374	
  

factors.  Despite the strong diurnal periodicity for two components in the surface energy 375	
  

balance, EF is generally considered to be a constant during daytime hours (Nichols and 376	
  

Cuenca 1993; Crago 1996; Crago and Brutsaert 1996).  Figure 11 shows the daily EF 377	
  

from NU-WRF run, which is averaged from local 7 am to 6 pm.  EF stays over 0.6 for 378	
  

most days, which means the energy fluxes to the surface energy budget are mainly 379	
  

contributed by latent heating.  With high EF, the impact for precipitation processes with 380	
  

different soil initialization is minimized.  Figure 12 shows the evaporative fraction at 381	
  

local noon for NU-WRF forecast initialized at 12 UTC on May 30th 2013, and it also 382	
  

shows the 0-10 cm soil moisture at model initialization.  WRF has higher soil moisture 383	
  

than COUP (Figure 12 and 13), but COUP has an only slightly smaller EF than WRF.  384	
  

The slightly dryer top soil moisture from COUP is also observed in Goergia and South 385	
  

Carolina during summer season, which is actually closer to the observed soil moisture 386	
  

from the U.S. Department of Agriculture’s Soil Climate Analysis Network (SCAN) (Case 387	
  

et al. 2011). The small EF difference shows that their similar partition in surface energy 388	
  

budget.  WRF also has a much lower resolution than COUP.  The lower resolution is due 389	
  

to the interpolated soil moisture field from NAM that has a 12 km resolution, while 390	
  

COUP uses LIS offline spin up that provides soil moisture at a resolution that is 391	
  

consistent with NU-WRF grid.   In addition, COUP uses Stage IV observed rainfall to 392	
  

force the LIS offline spin up, which should result a more accurate and observational 393	
  

consistent soil moisture profile than WRF.  Despite with fine resolution and more 394	
  

accurate soil moisture initialization, the high EF indicates COUP and WRF have a similar 395	
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land surface moisture transport to atmospheric boundary layer, which will minimize their 396	
  

impact on precipitation processes. 397	
  

 398	
  

5. Conclusions 399	
  

Two sets of NU-WRF are used for providing real-time forecasts twice a day for two-day 400	
  

long integration during IFloodS field campaign from May 1st to June 15th.  One of the 401	
  

NU-WRF forecast uses NAM interpolated land surface field as LSM forcing; the other 402	
  

one uses LIS spin up to provide land surface conditions, which assimilates the latest 403	
  

Stage IV observed precipitation.  These two sets of model datasets are compared with 404	
  

low resolution forcing dataset (NAM) and with each other.  The precipitation fields are 405	
  

evaluated with Stage IV and MRMS.   Two observations datasets are able to provide a 406	
  

difference range, which indicates observational uncertainties.  The main conclusions are 407	
  

as follows: 408	
  

1) Both NU-WRF simulations are able to reproduce the individual precipitation 409	
  

event during the field campaign period, which NAM is out of sync with observations for 410	
  

heavy precipitation events during period IV.  In addition, for those events where rainfall 411	
  

intensity less than 1 mm/h, NAM tends to overestimates the rainfall amount.  However, 412	
  

for heavy rainfall events (e.g. May 20th, May 25th to May 30th, and June 13th), NAM has 413	
  

underestimated the rainfall amounts.  Despite NAM has a better averaged rainfall over 414	
  

the six-week period compared with NU-WRF, the NAM forecast skill is not necessarily 415	
  

better for individual events.  Even though NU-WRF shares the same initial and boundary 416	
  

condition from NAM, and its rainfall field is averaged onto the coarser NAM grid, NU-417	
  

WRF still outperforms NAM in both time and spatial correlations.   418	
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2) NU-WRF is also able to produce a better rainfall PDF than NAM.  NAM 419	
  

significantly underestimates the frequencies for heavy rainfall and largely overestimates 420	
  

frequencies for very light rainfall.  While NU-WRF is able to produce PDF that is very 421	
  

close to the observed distribution from Stage IV.   422	
  

3)  NU-WRF sensitivity tests show that by switching to a coarser resolution and to a 423	
  

different convective scheme, the rainfall forecast skill has reduced, which turns out to be 424	
  

more comparable to NAM forecast in a case study.  Model resolution makes a difference 425	
  

for rainfall forecast, but it also depends on which scale it applies to, whether within the 426	
  

convective permitting scale or to coarser scales. 427	
  

4)  LIS spin up with Stage IV forcing has the advantage of producing higher 428	
  

resolution and more accurate surface properties than without LIS spin up.  However, the 429	
  

benefit for the precipitation forecast is marginal.  Two sets of NU-WRF simulations do 430	
  

not yield significant differences on rainfall characteristics during IFloodS field campaign 431	
  

period.  The differences between two NU-WRFs are much smaller than the differences 432	
  

between NAM and NU-WRF or between the two observational datasets (Stage IV and 433	
  

MRMS).  Evaporative fraction indicates the relatively similar land surface moisture 434	
  

transport between the two NU-WRF simulations, which inhibit the land-surface 435	
  

improvement to have a positive impact on precipitation forecast.   436	
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 541	
  

Period Dates Synoptic 
I 5/2-5/5 Trough and surface 

front 
II 5/8-5/11 Low 
III 5/16-5/24 Short wave trough 

followed by long 
wave trough 

IV 5/25-6/2 Group of short wave 
trough 

V 6/4-6/7 Low 
VI 6/8-6/11 Trough 
VII 6/12-6/14 Two short wave 

troughs 
Table 1. Seven precipitation periods and their synoptic setups.  542	
  

 543	
  
 544	
  
 545	
  

Period I II III IV V VI VII 

WRF 0.22 0.20 0.15 0.18 0.11 0.16 0.09 

COUP 0.22 0.21 0.15 0.18 0.11 0.16 0.12 

NAM 0.20 0.17 0.10 0.07 0.09 0.13 0.07 
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Table 2. Rainfall spatial correlations between model forecasts with MRMS during the 546	
  

seven precipitation periods. 547	
  

 548	
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Figure 1: NU-WRF grid configuration.  The outer domain (labeled 1 at the center) has a 550	
  

horizontal resolution of 9 km.  The middle domain (labeled 2) has a horizontal resolution 551	
  

of 3 km, and the inner domain (labeled 3) has a horizontal resolution of 1 km and covers 552	
  

Iowa. 553	
  

Figure 2: Flow chart for real-time forecast using NU-WRF coupling with LIS.  Orange 554	
  

boxes show the initial time of forecast cycles.  Green boxes show LIS offline spin up to 555	
  

provide soil initial condition.  The LIS spin up uses Stage IV to provide precipitation 556	
  

forcing and NU-WRF previous day forecast to provide additional meteorological forcing.  557	
  

Blue boxes show NU-WRF coupling with LIS uses LIS offline spin up to provide surface 558	
  

initial conditions and use NAM to provide meteorological initial conditions and boundary 559	
  

conditions. 560	
  

Figure 3: Accumulated precipitation from NU-WRF real-time forecast and Stage IV 561	
  

dataset from May 1st to June 15th 2013. 562	
  

Figure 4: Three hours accumulated precipitation from NU-WRF with LIS (CP) and 563	
  

without LIS coupling (WRF), NAM, MRMS, and Stage IV datasets from May 1st to June 564	
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Figure 5: Time series of bias (a), root mean square error (b), and correlation (c) of 566	
  

domain averaged rainfall from WRF, COUP, NAM, and Stage IV compared against 567	
  

MRMS with respect to forecast hours.   568	
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Figure 6: Similar to Figure 5 (c), but for spatial correlations between NU-WRF and NAM 569	
  

forecasts with MRMS for the whole campaign period from May 1st to June 15th (a), for 570	
  

period III May 16th to 24th(b), and for period IV May 25th to June 2nd (c).  Stage IV has a 571	
  

0.82 correlation averaged through out the campaign period. 572	
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coupling (COUP) and without LIS (WRF) at 06 UTC on May 20th 2013, which is 18 574	
  

hours since model initialization. 575	
  

Figure 8: Time series of bias (a), root mean square error (RMSE) (b), and correlation (c) 576	
  

of domain averaged rainfall from WRF, COUP, NAM, and Stage IV compared against 577	
  

MRMS with respect to each forecast.   578	
  

Figure 9: PDF of observed and forecasted three hours accumulated precipitation from 579	
  

May 1st to June 15th 2013. 580	
  

Figure 10: Domain averaged three hours rainfall accumulation for NU-WRF sensitivity 581	
  

runs.  The result is from forecast cycle initiated at 00 UTC on May 29th, 2013. 582	
  

Figure 11: Daily averaged (7 am to 6 pm) evaporative fraction from May 1st to June 15th 583	
  

2013. 584	
  

Figure 12: Evaporative fraction at local noon (17 UTC on May 19th) and top soil moisture 585	
  

(0-10 cm) at model initialization, which is at 12 UTC on May 19th, 2013. 586	
  

Figure 13: Same as Figure 11, except for daily averaged soil moisture. 587	
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 590	
  

Figure 1: NU-WRF grid configuration.  The outer domain (labeled 1 at the center) has a 591	
  

horizontal resolution of 9 km.  The middle domain (labeled 2) has a horizontal resolution 592	
  

of 3 km, and the inner domain (labeled 3) has a horizontal resolution of 1 km and covers 593	
  

Iowa. 594	
  

 595	
  

 596	
  

 597	
  

Figure 2: Flow chart for real-time forecast using NU-WRF coupling with LIS.  Orange 598	
  

boxes show the initial time of forecast cycles.  Green boxes show LIS offline spin up to 599	
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provide soil initial condition.  The LIS spin up uses Stage IV to provide precipitation 600	
  

forcing and NU-WRF previous day forecast to provide additional meteorological forcing.  601	
  

Blue boxes show NU-WRF coupling with LIS uses LIS offline spin up to provide surface 602	
  

initial conditions and use NAM to provide meteorological initial conditions and boundary 603	
  

conditions. 604	
  

 605	
  

 606	
  

 607	
  

Figure 3: Accumulated precipitation from NU-WRF real-time forecast and Stage IV 608	
  

dataset from May 1st to June 15th 2013. 609	
  

 610	
  

 611	
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 612	
  

 613	
  

Figure 4: Three hours accumulated precipitation from NU-WRF with LIS (CP) and 614	
  

without LIS coupling (WRF), NAM, MRMS, and Stage IV datasets from May 1st to June 615	
  

15th 2013. 616	
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 618	
  

 619	
  

Figure 5: Time series of bias (a), root mean square error (b), and correlation (c) of 620	
  

domain averaged rainfall from WRF, COUP, NAM, and Stage IV compared against 621	
  

MRMS with respect to forecast hours.   622	
  

 623	
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 624	
  

Figure 6: Similar to Figure 5 (c), but for spatial correlations between NU-WRF and NAM 625	
  

forecasts with MRMS for the whole campaign period from May 1st to June 15th (a), for 626	
  

period III May 16th to 24th(b), and for period IV May 25th to June 2nd (c).  Stage IV has a 627	
  

0.82 correlation averaged through out the campaign period. 628	
  

 629	
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 630	
  

Figure 7: Three hours rainfall accumulation (mm) for MRMS, NAM, NU-WRF with LIS 631	
  

coupling (COUP) and without LIS (WRF) at 06 UTC on May 20th 2013, which is 18 632	
  

hours since model initialization. 633	
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 634	
  

Figure 8: Time series of bias (a), root mean square error (RMSE) (b), and correlation (c) 635	
  

of domain averaged rainfall from WRF, COUP, NAM, and Stage IV compared against 636	
  

MRMS with respect to each forecast.   637	
  

 638	
  

 639	
  

 640	
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 641	
  

Figure 9: PDF of observed and forecasted three hours accumulated precipitation from 642	
  

May 1st to June 15th 2013. 643	
  

 644	
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 647	
  

Figure 10: Domain averaged three hours rainfall accumulation for NU-WRF sensitivity 648	
  

runs.  The result is from forecast cycle initiated at 00 UTC on May 29th, 2013. 649	
  

 650	
  

 651	
  

 652	
  

 653	
  

Figure 11: Daily averaged (7 am to 6 pm) evaporative fraction from May 1st to June 15th 654	
  

2013. 655	
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 656	
  

 657	
  

 658	
  

 659	
  

Figure 12: Evaporative fraction at local noon (17 UTC on May 19th) and top soil moisture 660	
  

(0-10 cm) at model initialization, which is at 12 UTC on May 19th, 2013. 661	
  

 662	
  

 663	
  

Figure 13: Same as Figure 11, except for daily averaged top soil moisture (0-10 cm). 664	
  

 665	
  


